CITY OF FERNAN LAKE VILLAGE SPECIAL CITY COUNCIL MEETING MINUTES February 12th, 2024

Mayor Watkins called the meeting to order at 5:00p.m. There was a quorum present of Council members Dircksen, Quinn, Goodsen and Meyers.

<u>Agenda</u> - The Council reviewed the agenda. There was a motion made by Council member Myers to approve the agenda noting the date correction for the next meeting and was seconded by Council member Quinn. Motion was carried by Dircksen, Meyers, Goodsen and Quinn.

Fernan Lake Management Planning - The Mayor gave a summary of the meeting agenda.

Ryan Van Goethem with EutroPHIX provided a presentation on the goals and background of the project including preliminary lakebed sediment sample results. A copy of the presentation is attached and will be added to the City's web site.

The public engaged in questions and comments with council and EutroPHIX representatives.

Public Guests		
Susan Hooks	Cecil Kelly	Kevin Collins
Bob Moate	Sharon Bosley	Bonnie Douglas
Sam Granier	Jim Lien	Jay Gridley
Cindy Williams	Lynn Alexander	Helen Elder
Randy Nichols	Robert West	Matt Castro
Rose Miller	Steve Palmer	Tom Yount
Brian White	Wanda Quinn	Joan Crawford
Monica Noce	Heidi Acuff	Janet Stevens
Aaron Davis	Bob Steed	Doug Webster
Keith Baugher	Robert Lindquist	Art Collins
Zac Swank	Bradley Roth	Rick Gerwin
Glen Douglas	Zane Blattstein	Martin Stacey
Rob Rutherford	Mary Sanderson	Neil Nemec

Richard & Jill Jurvelin Jeff & Mary Curry Jim & Michele Unsworth Larry & Carrie Shenfield

Dublic Cueste

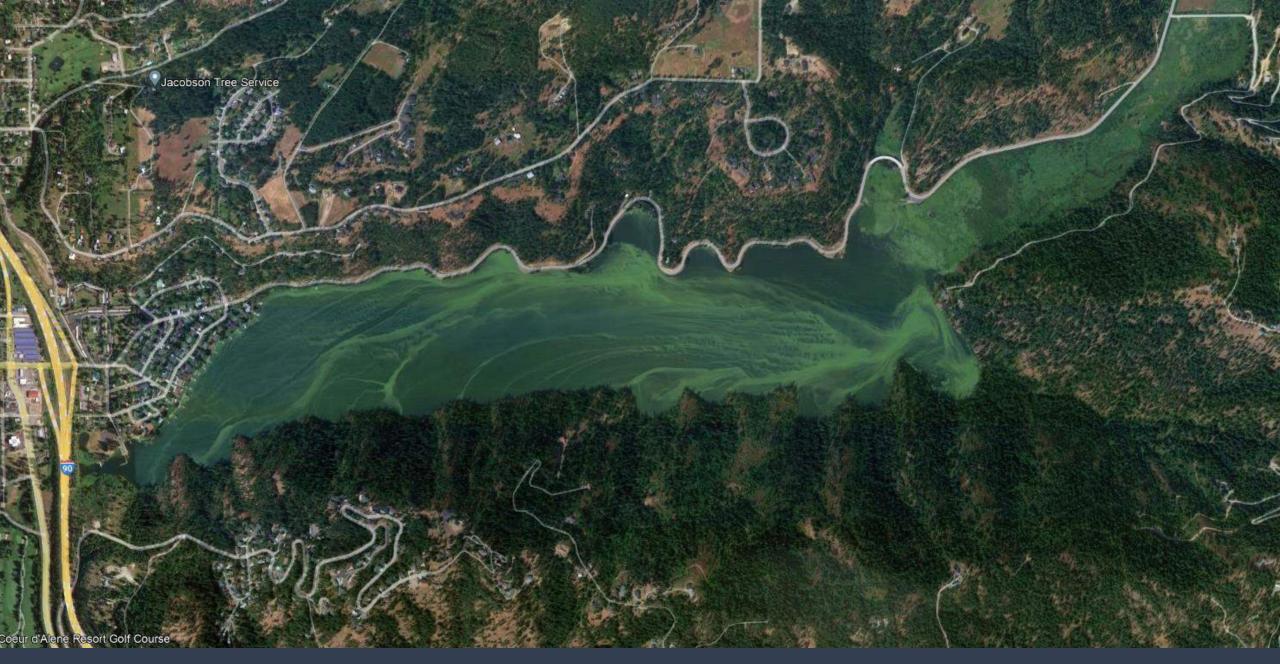
Bill & Dana Miller Diego & Rebecca Olivier Josh & Sarah Thompson

Motion was made by Council member Quinn to adjourn the meeting, seconded by Council member Dircksen. Meeting was adjourned at 6:20 p.m.

Fernan Lake Management Plan Introduction & Process

Feb 12th, 2024

Presenter: Ryan Van Goethem – EutroPHIX Partners: AquaTechnex LLC.



Fernan Lake, ID

- Wildlife
- Boating
- Fishing
- Sight Seeing

Planning Team

- Over 25 years experience managing lakes
- Experts in harmful algae blooms and phosphorus mitigation
- Determining solutions to provide clean, safe, and enjoyable water

Ryan Van Goethem Western WQ Specialist

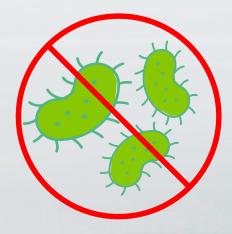
Byran Fuhrmann, Ph.D. Aquatic Technology Development Scientist (Biogeochemist)

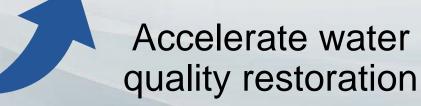
Scott Shuler Director of Technology & Operations

Terrence McNabb, CLM Manager AquaTechnex LLC

Bradley Roth Aquatic Biologist AquaTechnex LLC

Ben Casscles Aquatic & Fisheries Biologist AquaTechnex LLC




Lake Management Plan Goals

Short and long-term solutions to meet water quality standards

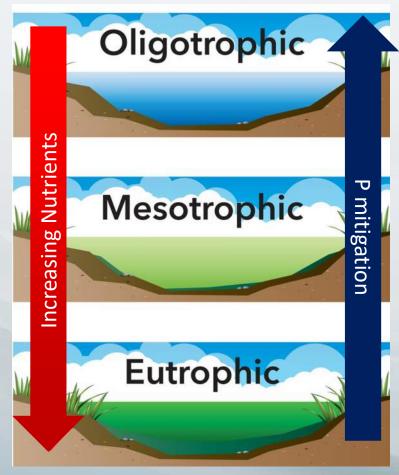
Reduce the extent and severity of HABs

Lake Management Plan Process

Stay Informed + Involved

- City of Fernan Village will notify residents of meetings
- Use QR to leave feedback received by EutroPHIX + City of Fernan Village
- Information page on City Website (coming soon!)

Fernan Lake Management Plan Public Feedback



Questions?

Next to Sediment Assessment

Phosphorus has strong impact on water quality and productivity

- Phosphorus often limiting/co-limiting in freshwater systems
- Increased trophic state and productivity
- Toxin producing cyanobacteria can dominate when phosphorus is more available
- Mitigating phosphorus in waterbodies often improves water quality

Fernan Lake flushes annually winter-spring, but little flow occurs in summer. Internal process likely determine summer water quality

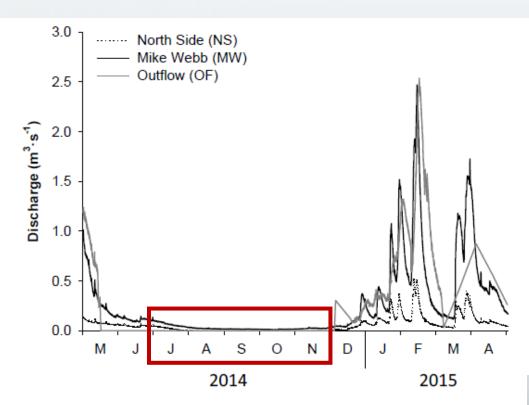
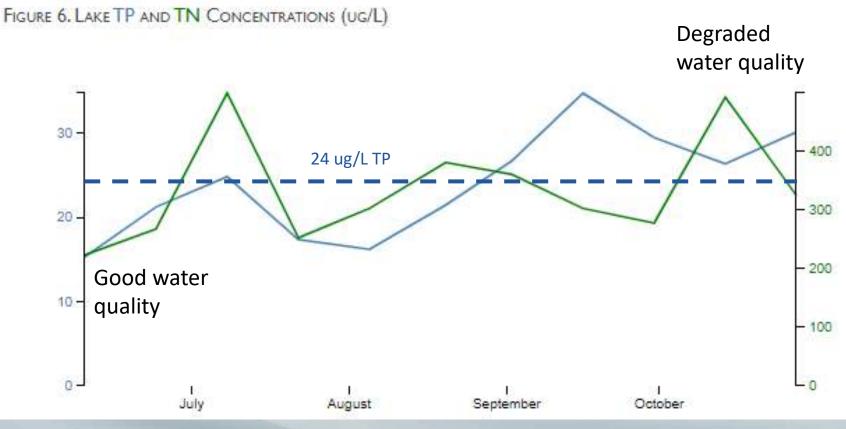
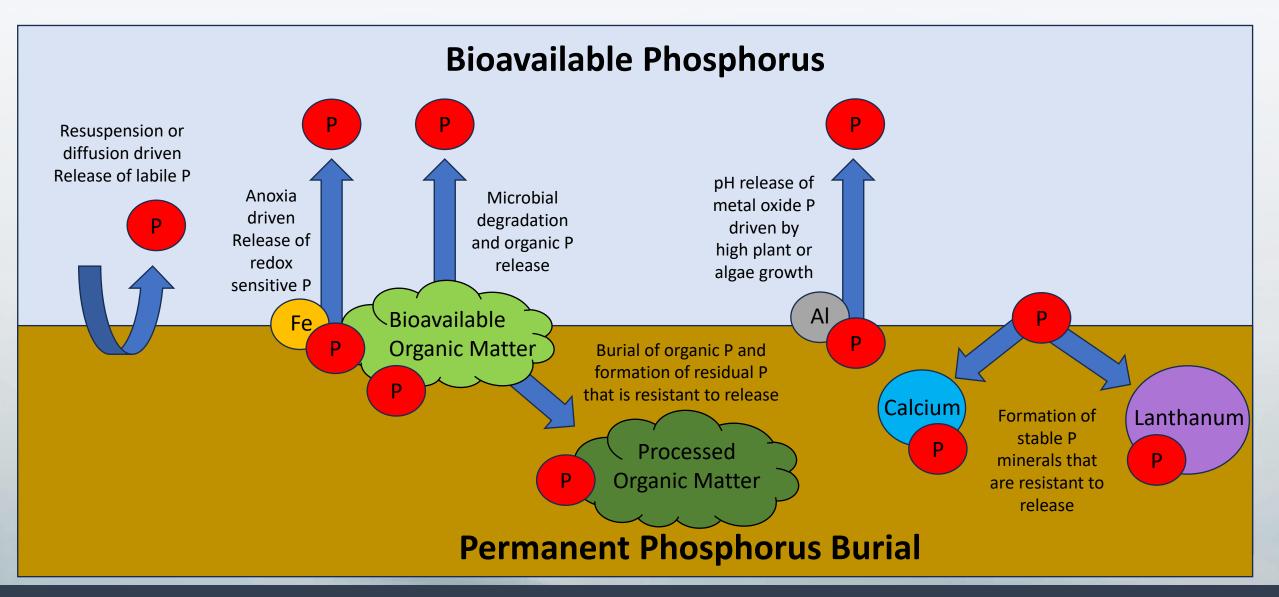


Figure 2.4: Hydrograph of discharge for the North Side (NS), Mike Webb (MW) and Outflow (OF) sampling sites during the 2014-2015 sampling period.


Table 2.7: Annual water budget for Fernan Lake, ID during the 2014-2015 study period.

Annual water budget			
Inputs	m³ • y-1	Depth (m· y-1)	Source
Fernan Creek	8.3.106	5.05	This study
Precipitation	1.3.106	0.77	This study
Culverts	1.8·104	0.01	This study
Gain from groundwater	3.4.106	2.05	This study
Outputs			
Fernan Dam	8.8·10 ⁶	5.38	This study
Evaporation	1.7.106	1.03	Regional averages (see Appendix G)
Loss to Aquifer	2.0.106	1.23	This study

LaCroix Thesis (2015)

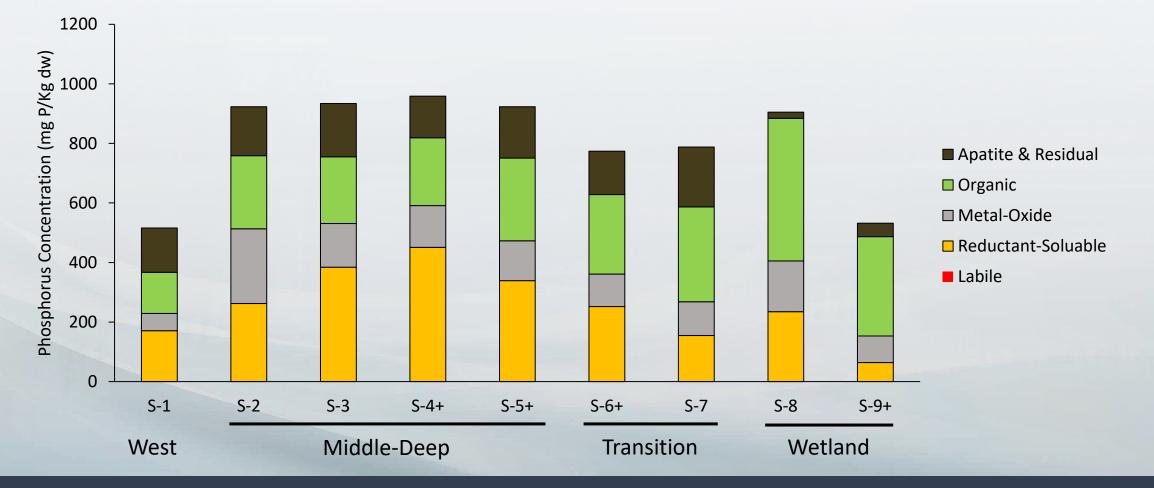

Nitrogen & Phosphorus increases during the summer, favorable for cyanobacteria growth

Modified from: https://webpages.uidaho.edu/vtl/Projects/Miles/fernan/

Lake sediments can help understand phosphorus dynamics

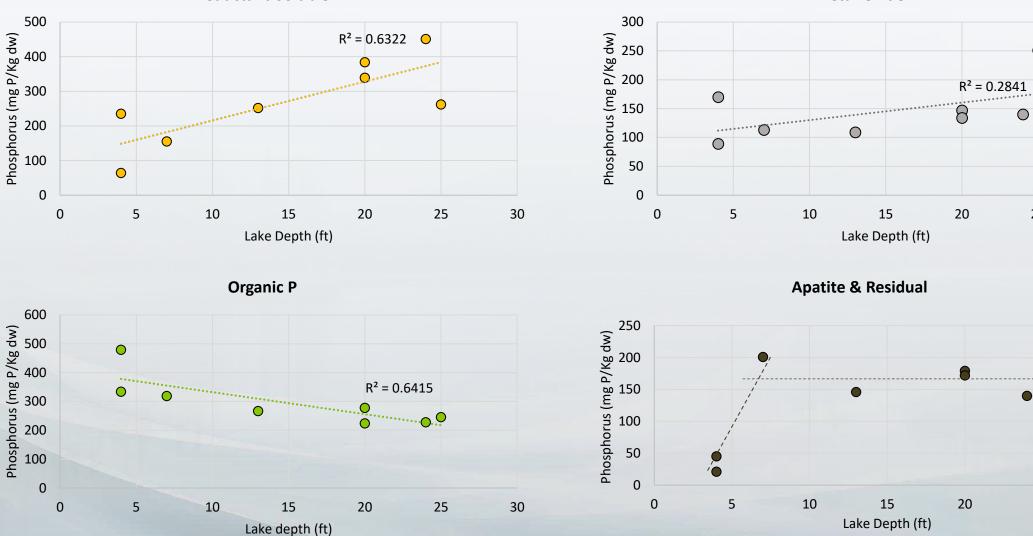
Sediment Sampling Nov 2023

- 9 sediment samples, 4 water samples
- Wetland to deep holes
- P fractionation analysis
- Sediment characteristics
- "+" P binding properties + indexes



Phosphorus Fractionation Interpretation

Parameter	Release Potential	Component(s)		
		High % solids =		
% Solids	N/A	mineral rich sediment		
		Low % solids = "muck" – organic matter rich sediment		
Labile P	Very high	Soluble phosphorus trapped within the sediment porewater		
Redox	Very high in deep lakes			
Sensitive P	Moderate in shallow lakes	Iron-bound phosphorus		
Sensitive F	Low in aerated lakes			
Metal	Moderate in shallow lakes	Mostly Aluminum-bound phosphorus		
Oxide P	Low in deep lakes	Some highly stable iron-bound phosphorus		
		Phospholipids and		
		polyphosphates		
Organic P	Moderate	Phosphorus contained within partially degraded organic matter		
		Calcium phosphate minerals		
Apatite & Residual P	Generally negligible	Lanthanum-bound phosphorus (rhabdophane)		
		Organic matter resistant to degradation		


P Fractionation reveals variation across the lake related to depth

Reductant-Soluble

Metal-Oxide

Note: data excludes S-1 due to being an outlier with different sediment type

25

 \bigcirc

25

30

30

Sediments have properties that allow for a high diffusion rate of P to water column

Diffusion Related Parameters									
Sample Name	% Solids	Total Organic Matter Content	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Particle Density (g/cm ³)	Porosity	Sediment Expansion Coefficient	Site Specific Osgood Index	Diffusion Index
S-4+	10%	12%	1.00	0.67	1.48	55%	85%	5.6	7.0
S-5+	10%	12%	1.00	0.60	1.34	56%	84%	4.7	7.3
S-6+	9%	12%	1.00	0.39	1.58	75%	76%	3.0	8.7
S-9+	8%	20%	1.00	0.36	0.90	60%	78%	0.9	8.0

Wetland (S-9+)

- lowest % solids
- highest Total Organic Matter and Diffusion Index

1= low 10 = high

Sediments are sensitive to low oxygen & anoxic conditions

Iron Related Insight										
	Redox P Release Parameters					Iron Stability and Stripping Potential				
Sample Name	% Soluble Manganese	Bioavailable Organic Matter Content	Redox Sensitive Fe to P Molar Ratio	Redox Release Index	% Dissolved Iron	% Redox Sensitive Iron	% Metal Oxide Iron	Total Relevant Fe to P Molar Ratio	Iron-Stripping Potential	
S-4+	58%	6%	17	9.5	2%	94%	5%	24	Moderate	
S-5+	75%	5%	17	7	10%	83%	7%	26	High	
S-6+	97%	6%	11	8	21%	69%	10%	16	Moderate	
S-9+	40%	16%	14	8	27%	46%	28%	8	Low	

- All samples have soluble manganese indicating sediments are going anoxic in summer
- High Fe-P ratios present allowing released P to rebind to Iron in oxic conditions in the lake
- Less Iron in Wetland sites indicating iron released and accumulating in lake, low potential to rebind released P

Sediments have abundant organic phosphorus and metal oxide P is mobile

			Orga	Organic P Relase Parameters pH Release Parameters			S			
	Sample Name	Site Depth (ft)	% Bioavailable Organic Matter	% Bioavailable Organic Phosphorus	Carbon to Phosphorus Ratio	Organic P Release Index	Sediment pH	Metal Oxide to P Molar Ratio	% Metal Oxide Aluminum	pH release index
	S-4+	24	49%	100%	114	8.0	5.8	28	90%	2.0
Γ	S-5+	20	47%	88%	83	7.7	5.6	33	89%	2.7
	S-6+	13	50%	84%	86	8.0	6.1	39	90%	3.7
	S-9+	4	81%	100%	134	10.0	5.6	82	93%	7.3

Wetland (S-9+)

- High bioavailable organic matter indicating source of P during degredation
- Indicates high sediment oxygen demand
- Metal oxide P is released here, Al-P is a very inefficient bond

Lake

- medium bioavailable organic matter indicating organic P partially degraded,
- medium sediment oxygen demand expected
- Metal oxide P is stable here, Al-P is an inefficient bond

Sediments have abundant organic phosphorus and metal oxide P is mobile

Phosphorus Burial Insight										
		Organic P Burial Parameters					Stable Mineral Formation Overall			
	Sample Name	% Refractory Organic Matter	% Refractory Organic Phosphorus	Carbon to Phosphorus Ratio	Organic Matter Burial Potential		Acid Soluble Calcium Content (g/kg)	Lanthanum Content (mg/kg)	Stable P Mineral Formation Potential	Phosphorus Burial Potential
	S-4+	51%	0%	114	Low	15%	0.6	0	Low	Low
	S-5+	53%	12%	83	Low	14%	0.5	0	Low	Moderate
	S-6+	50%	16%	86	Low	12%	0.4	0	Low	Moderate
	S-9+	19%	0%	134	Low	8%	0.4	0	Low	Low

Wetland (S-9+)

- Low refractory organic matter, major source of organic P
- Low Ca-P in sediment
- Low burial potential of P to non-mobile forms

Lake

- medium refractory organic matter indicating organic P partially degraded,
- Low Ca-P in sediment
- Low burial potential of P to non-mobile forms

Water Chemistry Nov 2023

Total Phosphorus: 64 μ g/L in wetland, 30-50 μ g/L in lake Free Reactive Phosphorus: 6 μ g/L in wetland, < 5 μ g/L in lake,

• P bound in algae biomass and particulates, macrophyte decay

Alkalinity: 13-23 mg/L CaCO3 Total Hardness: <10 mg/L CaCO3 pH: ~7

- Water is very soft allowing for large shifts in pH
- Algae blooms and wetland likely jump pH >9

*Need careful consideration if using algaecides or P sequestration agents

Sediment Assessment Summary

- P is cycling from wetland through the lake
- P is maintained in available forms, low proportion is bound to stable minerals and permanently buried
- Wetland is major P source, deep lake sediments likely a moderate P source
- Unique biogeochemistry will inform solutions for Lake Management Plan

Questions?

Fernan Lake Management Plan Public Feedback

